Differential expression of mRNA for guanylyl cyclase-linked endothelium-derived relaxing factor receptor subunits in rat kidney.
نویسندگان
چکیده
Endothelium-derived relaxing factor (EDRF) has profound effects on the renal vasculature, the glomerular mesangium, and also affects renal salt excretion. EDRF stimulates guanylyl cyclases, which are thought to be heterodimers comprised of alpha and beta subunits. Two alpha and two beta isoforms have been identified thus far. However, the molecular composition of in vivo guanylyl cyclase-linked EDRF receptors is unknown. We used polymerase chain reaction to clone a portion of the rat alpha 2 subunit. Guanylyl cyclase-linked EDRF receptor mRNA was detected in microdissected renal structures using a reverse transcription/polymerase chain reaction assay. The interlobular artery/afferent arteriole contained mRNA for the alpha 1, alpha 2, and beta 1 subunits; a faint beta 2 band was found in 29% of experiments. In contrast, the cortical collecting duct contained mRNA only for alpha 1 and beta 2 subunits. We conclude that guanylyl cyclase-linked EDRF receptor subunit isoforms are independently and heterogeneously expressed in the renal vasculature and cortical collecting duct, suggesting that several different EDRF receptors exist in vivo. These data suggest that the tubule receptor is composed of alpha 1/beta 2. The vasculature may contain at least two different EDRF receptors (alpha 1/beta 1 and alpha 2/beta 1). Some beta 2 may also be expressed, allowing for even greater heterogeneity.
منابع مشابه
Differential expression of NO-sensitive guanylyl cyclase subunits during the development of rat cerebellar granule cells: regulation via N-methyl-D-aspartate receptors.
In primary cultures of rat cerebellar granule cells with a functional network of glutamatergic neurons, the expression pattern of the different subunits of nitric-oxide (NO)-sensitive guanylyl cyclase changes during cell differentiation. These cells express the alpha1, alpha2 and beta1 subunits of NO-sensitive guanylyl cyclase and synthesize cyclic guanosine monophosphate (cGMP) in response to ...
متن کاملDownregulation of soluble guanylyl cyclase in young and aging spontaneously hypertensive rats.
Endothelial dysfunction, as observed in hypertension and atherosclerosis, is associated with a reduction in the bioavailability of endothelium-derived nitric oxide (NO). We tested the hypothesis that alterations in the soluble guanylyl cyclase (sGC) pathway may also contribute to the pathogenesis of hypertension. Therefore, we investigated the expression and activity of sGC in young (6 weeks) a...
متن کاملNitric Oxide-Sensitive Guanylyl Cyclase Is Differentially Regulated by Nuclear and Non-Nuclear Estrogen Pathways in Anterior Pituitary Gland
17β-estradiol (E2) regulates hormonal release as well as proliferation and cell death in the pituitary. The main nitric oxide receptor, nitric oxide sensitive- or soluble guanylyl cyclase (sGC), is a heterodimer composed of two subunits, α and β, that catalyses cGMP formation. α1β1 is the most abundant and widely expressed heterodimer, showing the greater activity. Previously we have shown that...
متن کاملEndothelium and control of vascular function. State of the Art lecture.
The response of isolated blood vessels to a variety of vasoactive agonists is modulated by the presence of endothelial cells. Indeed, these cells can release both dilator and constrictor substances. The major endothelium-derived relaxing factor may be nitric oxide, which activates soluble guanylate cyclase in the smooth muscle, although the endothelial cells also secrete an unidentified hyperpo...
متن کاملEstradiol rapidly inhibits soluble guanylyl cyclase expression in rat uterus.
Previous reports that investigated the regulation of the NO/soluble guanylyl cyclase (sGC)/cGMP pathway by estrogenic compounds have focused primarily on the levels of NO, NO-producing enzymes, and cGMP in various tissues. In this study, we demonstrate that 17beta-estradiol (E2) regulates the alpha(1) and beta(1) subunits of the NO receptor, sGC, at the mRNA and protein levels in rat uterus. Us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 91 2 شماره
صفحات -
تاریخ انتشار 1993